
Multidimensional Data Exploration with
Glue

Author: Christopher Beaumont, Thomas Robitaille, Alyssa Goodman, Michelle
Borkin

email: cbeaumont@cfa.harvard.edu
institution: University of Hawaii, Harvard University, Max Planck Institute for

Astronomy
Date: 2013-01-02

video: http://www.youtube.com/watch?v=47LNpvDlKUk
tags: data visualization, exploratory data analysis, Python

summary: Modern research projects incorporate data from several sources, and
new insights are increasingly driven by the ability to interpret data in
the context of other data. Glue is an interactive environment built on
top of the standard Python science stack to visualize relationships
within and between datasets. With Glue, users can load and visualize
multiple related datasets simultaneously. Users specify the logical
connections that exist between data, and Glue transparently uses this
information as needed to enable visualization across files. This
functionality makes it trivial, for example, to interactively overplot
catalogs on top of images. The central philosophy behind Glue is that
the structure of research data is highly customized and
problem-specific. Glue aims to accommodate this and simplify the
"data munging" process, so that researchers can more naturally
explore what their data have to say. The result is a cleaner scientific
workflow, faster interaction with data, and an easier avenue to insight.

Introduction
The world is awash in increasingly accessible and increasingly interrelated data. Modern
researchers rarely consider data in isolation. In astronomy, for example, researchers
often complement newly-collected data with publicly-available survey data targeting a
different range of the electromagnetic spectrum. Because of this, new discoveries are
increasingly dependent upon interpreting data in the context of other data.

Unfortunately, most of the current interactive tools for data exploration focus on
analyzing a single dataset at a time. It is considerably more difficult to explore several
conceptually related datasets at once. Scientists typically resort to non-interactive
techniques (e.g., writing scripts to produce static visualizations). This slows the pace of
investigation, and makes it difficult to uncover subtle relationships between datasets.

To address this shortcoming, we have been developing Glue. Glue is an interactive data
visualization environment that focuses on multi-dataset exploration. Glue allows users to
specify how different datasets are related, and uses this information to dynamically link
and overlay visualizations of several datasets. Glue also integrates into Python-based
analysis workflows, and eases the back-and-forth between interactive and
non-interactive data analysis.

mailto:cbeaumont@cfa.harvard.edu
http://www.youtube.com/watch?v=47LNpvDlKUk
http://glueviz.org

The Basic Glue Workflow
The central visualization philosophy behind Glue is the idea of linked views -- that is,
multiple related representations of a dataset that are dynamically connected, such that
interaction with one view affects the appearance of another. For example, a user might
create two different scatter plots of a multi-dimensional table, select a particular region
of parameter space in one plot, and see the points in that region highlighted in both
plots. Linked-view visualizations are especially effective at exploring high-dimensional
data. Glue extends this idea to related data sets spread across multiple files.

Let's illustrate the basic Glue workflow with an example. An astronomer is studying
Infrared Dark Clouds (environments of star formation) in our Galaxy. Her data sets
include a catalog of known Infrared Dark Clouds, a second catalog of "cores"
(substructures embedded in these clouds where the stars actually form), and a
wide-field infrared survey image of a particular cloud.

Step 1 She begins by loading the cloud catalog into Glue. She creates a scatter plot of
the position of each cloud, as well as a histogram showing the distribution of surface
densities. She creates each visualization by dragging the data item onto the
visualization area. At this point, her screen looks like Figure 1.

The basic Glue interface, shown at the end of step 1. Datasets are listed on the left
panel. Dragging them to the right creates a new visualization.

Step 2 She is interested in a particular region of the sky, and thus draws a lasso around
particular points in the scatter plot. This creates a new "subset", which is shown in red
on each visualization (Figure 2). If she traces a different region on either plot, the subset
will update in both views automatically.

Glue after step 2. Tracing a cluster of points in the scatter plot creates a new subset,
The histogram plot updates automatically.

Step 3 Next she loads the infrared image. She would like to see how the points in the
catalog relate to structures in the image, by overplotting the subset on the image. To do
this, she first "links" the data by defining the logical relationships between the two files.
She opens a data linking dialog, which displays the attributes defined for each dataset
(Figure 3). The image has attributes for the x and y location of each pixel, and the
catalog has columns which list the location of each object in the same coordinate
system. She highlights the attribute describing the x location attribute for each dataset
(Right Ascension), and "links" them (in effect informing Glue that the two attributes
describe the same quantity). She repeats this for the y location attribute (declination),
and closes the dialog.

The dialog for expression relationships between different datasets in step 3. Here,
both datasets use the same spatial coordinates.

Step 4 Now, she can drag the subset onto the image, to overplot these points at their
proper location (this is possible because Glue now has enough information to compute
the location of each catalog source in the image. The details of how this is accomplished
are described in the next section). All three plots are still linked: if the user highlights a
new region in the image, this will redefine the subset and update each plot. Figure 4
shows the Glue interface at this point.

Once the catalog and image are linked, the user can overplot the original subset on
the image (step 4).

The relationship between the catalog and image was very simple; each dataset
described the same spatial quantities, in the same units. In general, connections
between datasets are more complicated. For example, the catalog of cores specifies
positions in a different coordinate system. Because of this, Glue allows users to connect
quantities across datasets using transformation functions. Glue includes some of these
functions by default, but users can also write their own functions for arbitrary
transformations. Glue uses these functions as needed to transform quantities between
coordinate systems, to correctly overlay visualizations and/or filter data in subsets.

Step 5 Our scientist discovers several interesting relationships between these datasets
-- in particular, that several distinct entries in the cloud catalog appear to form a
coherent, extended structure in the image. Furthermore, the cores embedded in these
clouds all have similar velocities, strengthening the argument that they are related. At
this point, she decides to test this hypothesis more rigorously, by comparing to models
of structure formation. This analysis will happen outside of Glue. She saves all of her
subsets as masks, for followup analysis. Furthermore, she saves the entire Glue
session, which allows her to re-load these datasets, dataset connections, and subset
definitions at any time.

Eventually, the user annotates several interesting regions in parameter space (step
5). These subsets can be exported as masks for further analysis.

Glue Architecture
The scenario above outlines the basic workflow that Glue enables -- Glue allows users
to create interactive linked visualizations, and to drill down into interesting subsets of
these visualizations. One of the design priorities in Glue is to keep visualization code as
simple and modular as possible, so that adding new visualizations is straightforward.
Here we provide an overview of how we have implemented cross-data linking in Glue,
while striving to keep visualization code as simple as possible.

Keeping visualizations in-sync is accomplished with the publish/subscribe pattern. Glue
defines several standard messages that communicate state changes (e.g., that a subset
definition has been changed, a subset has been added or removed, etc.). Visualization
clients attach callback methods to a central hub; these callback methods are meant to
respond to a particular type of state change (e.g., to change the appearance of a plot).
The hub is responsible for broadcasting messages it receives -- in effect, calling each
callback function registered with a particular message. Thus, to stay synchronized, a
visualization client simply needs to implement callback functions that handle each type
of message, and register these with the hub.

The hub receives messages to broadcast from data and subset objects. The base
classes for these objects override the __setattribute__ method, such that state
changes automatically send messages to the hub. This means that, in most situations,
code that edits the state (for example, code that translates user-drawn
regions-of-interest to subset definitions) need not manually broadcast messages.

Glue enables data linking across files by providing a simple, dictionary-like interface for
accessing attributes from data. For example, consider the case where a user overplots a
catalog on top of an image. Such an overlay requires knowledge of the location of each
catalog entry in the pixel coordinate system of the image. The pseudo-code for the
overlay looks like this:

def overplot_catalog(catalog_data):
 try:

 # try to fetch requested quantities
 x = catalog_data['pixel_coord_x']
 y = catalog_data['pixel_coord_y']
 except InvalidAttribute:
 # cannot compute pixel location of catalog
 return
 # x, y are numpy arrays
 plot(x, y)

In other words, visualization code simply looks up the information it needs. Behind the
scenes, the data object is responsible for retrieving and/or computing this quantity, and
returning a NumPy array. If it cannot do this, it raises an InvalidAttribute
exception, which visualization code responds to. Importantly, visualization code is not
responsible for performing coordinate transformations.

Subsets also rely on this interface for filtering data. Each subset stores its logical
definition as a subset state. Fundamentally, subset states are combinations of
inequalities. Each subset state has a to_mask method that is capable of filtering a
given dataset. For example, the implementation of a simple inequality subset state looks
like this:

class GreaterThanSubsetState(SubsetState):

 def __init__(self, attribute, threshold):
 self.attribute = attribute
 self.threshold = threshold

 def to_mask(self, data):
 # uses the data dictionary interface
 return data[self.attribute] > self.threshold

Because subset states retain the information about which quantities they constrain, they
can be applied across datasets, provided the quantities that they filter against are
defined or computable in the target dataset.

Internally, Glue maintains a graph of coordinate transformation functions when the user
defines connections between datasets. The nodes in this graph are all the attributes
defined in all datasets, and the edges are translation functions. When client code tries to
access a quantity that is not originally stored in a dataset, Glue searches for a path from
quantities that are natively present to the requested quantity. If such a path exists, The
relevant set of transformation functions are called, and the result is returned.

Integrating with Python Workflows
Python is the language-of-choice for many scientists, and the fact that Glue is written in
Python means that it is more easily "hackable" than a typical GUI application. This blurs
the boundary between interactive and scripted analysis, and can lead to a more fluid
workflow. Here are several examples:

Custom data linking functions Glue allows users to specify arbitrary Python functions
to translate between quantities in different datasets. As a simple example, consider a
function which translates between pounds and kilograms:

from glue.config import link_function

@link_function(info='Convert pounds to kilograms')

def pounds2kilos(lbs):
 return lbs / 2.2

Link functions accept and return NumPy arrays. The link_function decorator adds
this function to the list of translation functions presented in the data linking UI. This code
can be put in a configuration file that glue runs on startup.

Custom data loading A traditional weakness of GUIs is their fragility to unanticipated
data formats. However, Glue allows users to specify custom data loader methods, to
parse data in unrecognized formats. For example, to parse jpeg files:

from glue.config import data_factory
from glue.core import Data
from skimage.io import imread

@data_factory('JPEG Reader', '*.jpg')
def read_jpeg_image(file_name):
 im = imread(file_name)

 return Data(label='Image',
 r=im[:, :, 0],
 g=im[:, :, 1],
 b=im[:, :, 2])

This function parses a data object with three attributes (the red, green, and blue
channels). The data_factory decorator adds this function to the data loading user
interface.

Setup Scripts Glue can be passed a Python script to run on startup. This can be a
convenient way to automate the task of loading and linking several files that are
frequently visualized. This addresses another typical pain-point of GUIs -- the repetitive
mouse-clicking one has to do every time a GUI is restarted.

Calling Glue from Python Glue can be invoked during a running Python session. Many
scientists use Python for data-exploration from the command line (or, more recently, the
IPython notebook). Glue can be used to interact with live Python variables. For example,
Glue includes a convenience function, qglue, that composes "normal" data objects like
NumPy arrays and Pandas DataFrames into Glue objects, and initializes the Glue UI
with these variables. qglue is useful for quick questions about multidimensional data
that arise mid-analysis.

Similarly, Glue embeds an IPython terminal that gives users access to the Python
command line (and Glue variables) during a glue session. Variables in a Glue session
can be introspected and analyzed on this command line.

Relationship to Other Efforts
Glue helps researchers uncover the relationships that exist between related datasets. It
enables users to easily create multiple linked visualizations which can be used to
identify and drill down into interesting data subsets.

Many of the ideas behind Glue are rooted in previous efforts (for a more thorough
history from an astronomy perspective, see Goodman12). The statistician John Tukey
pioneered many of the ideas behind what he termed Exploratory Data Analysis (that is,
the open-ended investigation of features in datasets, as distinguished from Confirmatory
Data Analysis where specific hypotheses are tested systematically; Tukey77). In the early
1970s, he developed the PRIM-9 program, which implemented the idea of creating
multiple views of multivariate data, and isolating data subsets. More modern

linked-visualization programs influenced by PRIM-9 include GGobi, Spotfire, DataDesk,
and Tableau (the first is free and open-source, the latter 3 are commercial).

Within the astronomy community, Topcat and Viewpoints focus on linked visualization of
tabular data. Finally, some efforts from the Virtual Observatory community (especially
the SAMP protocol) allow different visualization tools to interoperate, and hence provide
a limited linked-view environment.

Glue builds upon the ideas developed in these programs in a few key ways. The
majority of these linked-view environments focus on the exploration of a single catalog.
Glue generalizes this approach in two directions. First, Glue is designed to handle
several files at a time, and to visually explore the connections between these files.
Second, Glue handles non-tabular data like images -- this is critical for applications in
astronomy, medical imaging, and Geographic Information Systems.

The landscape of data is evolving rapidly, and driving revolutions both within and
beyond science. The phenomenon of "big data" is one of the most public facets of this
revolution. Rapidly growing volumes of data present new engineering challenges for
analysis, as well as new opportunities for data-driven decision making. Glue tackles a
different but equally important facet of the data revolution, which we call "wide data".
Data are becoming increasingly inter-related, and the ability to tease out these
connections will enable new discoveries. Glue is a platform for visually and flexibly
exploring these relationships.

References

Goodman12 Goodman, Alyssa Principles of high-dimensional data visualization in
astronomy Astronomische Nachrichten, Vol. 333, Issue 5-6, p.505

Tukey77 Tukey, John Exploratory Data Analysis Addison-Wesley Publishing
Company, 1977

http://ggobi.org/
http://spotfire.tibco.com
http://www.datadesk.com
http://www.tableausoftware.com
http://www.star.bris.ac.uk/~mbt/topcat/
https://www.assembla.com/wiki/show/viewpoints
http://www.ivoa.net/documents/SAMP/

	Introduction
	The Basic Glue Workflow
	Glue Architecture
	Integrating with Python Workflows
	Relationship to Other Efforts
	References

